Clustering in the Presence of Noise
نویسنده
چکیده
Clustering, which is partitioning data into groups of similar objects, has a wide range of applications. In many cases unstructured data makes up a significant part of the input. Attempting to cluster such part of the data, which can be referred to as noise, can disturb the clustering on the remaining domain points. Despite the practical need for a framework of clustering that allows a portion of the data to remain unclustered, little research has been done so far in that direction. In this thesis, we take a step towards addressing the issue of clustering in the presence of noise in two parts. First, we develop a platform for clustering that has a cluster devoted to the “noise” points. Second, we examine the problem of “robustness” of clustering algorithms to the addition of noise. In the first part, we develop a formal framework for clustering that has a designated noise cluster. We formalize intuitively desirable input-output properties of clustering algorithms that have a noise cluster. We review some previously known algorithms, introduce new algorithms for this setting, and examine them with respect to the introduced properties. In the second part, we address the problem of robustness of clustering algorithms to the addition of unstructured data. We propose a simple and efficient method to turn any centroidbased clustering algorithm into a noise robust one that has a noise cluster. We discuss several rigorous measures of robustness and prove performance guarantees for our method with respect to these measures under the assumption that the noise-free data satisfies some niceness properties and the noise satisfies some mildness properties. We also prove that more straightforward ways of adding robustness to clustering algorithms fail to achieve the above mentioned guarantees.
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملشکلدهی وفقی و هوشمند پرتو در آرایههای میکروفونی Ad-hoc با استفاده از خوشهبندی و رتبهبندی میکروفونها
Considering the existence of a many speech degradation factors, speech enhancement has become an important topic in the field of speech processing. Beamforming is one of the well-known methods for improving the speech quality that is conventionally applied using regular (classical) microphone arrays. Due to the restrictions in the regular arrangement of microphones, in recent years there has be...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013